A Contour-integral Based Qz Algorithm for Generalized Eigenvalue Problems
نویسنده
چکیده
Recently, a kind of eigensolvers based on contour integral were developed for computing the eigenvalues inside a given region in the complex plane. The CIRR method is a classic example among this kind of methods. In this paper, we propose a contour-integral based QZ method which is also devoted to computing partial spectrum of generalized eigenvalue problems. Our new method takes advantage of the technique in the CIRR method of constructing a particular subspace containing the eigenspace of interest via contour integrals. The main difference between our method and CIRR is the mechanism of extracting the desired eigenpairs. We establish the related framework and address some implementation issues so as to make the resulting method applicable in practical implementations. Numerical experiments are reported to illustrate the numerical performance of our new method.
منابع مشابه
Novel interpretation of contour integral spectral projection methods for solving generalized eigenvalue problems
For generalized eigenvalue problems, we consider computing all eigenvalues located in a certain region and their corresponding eigenvectors. Recently, contour integral spectral projection methods have been proposed for such problems. In this study, from an analysis of the relationship between the contour integral spectral projection and the Krylov subspace, we provide a novel interpretation of ...
متن کاملA Parallel QZ Algorithm for Distributed Memory HPC Systems
Appearing frequently in applications, generalized eigenvalue problems represent one of the core problems in numerical linear algebra. The QZ algorithm by Moler and Stewart is the most widely used algorithm for addressing such problems. Despite its importance, little attention has been paid to the parallelization of the QZ algorithm. The purpose of this work is to fill this gap. We propose a par...
متن کاملA numerical method for polynomial eigenvalue problems using contour integral
We propose a numerical method using contour integral to solve polynomial eigenvalue problems (PEPs). The method finds eigenvalues contained in a certain domain which is defined by a surrounding integral path. By evaluating the contour integral numerically along the path, the method reduces the original PEP into a small generalized eigenvalue problem, which has the identical eigenvalues in the d...
متن کاملThe Multishift QZ Algorithm with Aggressive Early Deflation
Recent improvements to the QZ algorithm for solving generalized eigenvalue problems are summarized. Among the major modifications are novel multishift QZ iterations based on chasing chains of tiny bulges and an extension of the so called aggressive early deflation strategy. The former modification aims to improve the execution time of the QZ algorithm on modern computing systems without changin...
متن کاملSolving Single Phase Fluid Flow Instability Equations Using Chebyshev Tau- QZ Polynomial
In this article the instability of single phase flow in a circular pipe from laminar to turbulence regime has been investigated. To this end, after finding boundary conditions and equation related to instability of flow in cylindrical coordination system, which is called eigenvalue Orr Sommerfeld equation, the solution method for these equation has been investigated. In this article Chebyshev p...
متن کامل